The biological significance of carbohydrates in glycosylated biopolymers emerged from studies on viruses, microbial cells and animal tissues. Plant-related processes, a relative newcomer to this area of research, now offer challenging questions as regards the roles of glycosyl-conjugates and carbohydrate-binding proteins in such broadly based topics as pollination, fertilization, symbiosis (including nitrogen fixation), the chemical basis of morphogenesis, and the broad area of plant protection. While the impressive accomplishments on model systems, membrane-bound processes, receptor site biochemistry, and cell surface interactions fill numerous reports, reviews, and books, most of these involve biological systems other than plants. A real need exists for the present volume in which cell recognition and cell surface interactions as related to plants are examined. Contributions to this volume may be sorted into three categories: first an overview of the structures and properties of glycoconjugates, then a closer look at specific systems in terms of biological function, and finally, selected examples of cell recognition and cell surface interactions as encountered in biology. To introduce the general subject, Alan Elbein reviews the structure and biosynthesis of certain glycoconjugates and examines the biochemical basis of adherence between bacteria and eucaryotic cells. Irwin Goldstein examines the properties of plant-derived lectins, in particular a group of lectins from Bandeiraea simplicifolia. The roles of several biologically-active complex carbohydrates in plant-related host-pest relationships are examined by Peter Albersheim and his colleagues.

- Photo London
- Physics Exercises: Questions and Answers
- Physiology of the Cladocera
- Physical Education - Primary Source Edition
- Physiotherapie Und Prothetik Nach Amputation Der Unteren Extremitat
- Physics in the Real World